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A NONLINEAR PHYSICS-BASED OPTIMAL CONTROL METHOD FOR

MAGNETOSTRICTIVE ACTUATORS

RALPH C. SMITH*

Abstract. This paper addresses the development of a nonlinear optimal control methodology for mag-

netostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear

and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommo-

dated by models and control laws to utilize the full capabilities of the actuators. A characterization based

upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady

state actuator dynamics under a variety of operating conditions. The control method consists of a linear

perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear

control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offiine.

The feedback control is constructed through linearization of the perturbed system about the optimal system

and is efficient for online implementation. As demonstrated through numerical examples, the combined

hybrid control is robust and can be readily implemented in linear PDE-based structural models.

Key words. Nonlinear optimal control, perturbation control, magnetostrictive actuators

Subject classification. Applied and Numerical Mathematics

1. Introduction. This paper addresses the development of a model-based nonlinear optimal control

method for magnetostrictivc actuators in structural applications. Such actuators utilize the 'giant' mag-

netostrictive effects provided by certain rare-earth compounds to produce significant strains in response to

applied magnetic fields. As discussed in [7, 11], one core material which has proven very effective under

a variety of operating conditions is Terfenol-D. Actuators utilizing this material can generate mechanical

strains on the order of 500 t_strain in the linear range and up to 1000 I_strain in the nonlinear range.

The materials are capable of generating forces in excess of 125 lbf with specific values highly dependent

upon transducer design. Furthermore, the material provides a broadband response ranging from DC up to

20 KHz [17]. In combination, these qualities provide Terfenol-D transducers with significant capabilities as

controllers and vibration absorbers in industrial and heavy structural applications. Such transducers have

also been employed as sonar transducers and precision micropositioners.

The full utilization of magnetostrictive transducers in all such applications requires quantification of

the transducer dynamics in response to various inputs. Magnetostrictive materials such as Terfenol exhibit

inherent magnetic hysteresis which is significant at moderate to high drive levels. Phrthermore, numerous

investigations have demonstrated the stress and temperature sensitivity of the materials along with the non-

linear behavior of elastic properties such as the Young's modulus [8, 28, 37]. Finally, the magnetomechanical

relation between input currents and output strains is nonlinear and displays significant hysteresis at high

drive levels. All such hysteresis and nonlinear effects must be incorporated in both the transducer models

and control laws to utilize the full capabilities of the actuators at high drive levels.
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The magnetization model we employ is based upon an extension of the ferromagnetic mean field model

of Jiles and Atherton [23, 24, 25, 33] while magnetostriction and hence strains are incorporated through a

quadratic domain rotation model [23]. As demonstrated through validation experiments in [9], this combined

model quantifies transducer dynamics for a large variety of prestresses and drive levels. The model also

quantifies asymmetric minor loops which makes it appropriate for control design in structural applications

which involve multiple frequencies and transient dynamics.

We concentrate here on linear structural models which incorporate this nonlinear actuator model. Such

linear models are common in applications characterized by large forces but small displacements and provide

a natural regime for initial development of a nonlinear control method which incorporates the actuator hys-

teresis and nonlinearities. A nonlinear open loop control is constructed first through the application of finite

dimensional optimal control theory. This control adequately incorporates the hysteresis and nonlinearities

inherent to the actuator but is not robust with regard to perturbations in operating conditions. Such robust-

ness is provided by an additional feedback control constructed through linearization about the unperturbed

optimal open loop control. The hybrid control containing the nonlinear open loop and linear perturbation

closed loop components is highly robust, efficient to implement, and utilizes the flexibility and accuracy of

the nonlinear actuator model to provide the capability for attenuating transient and broadband dynamics.

To place this control method in perspective, we briefly summarize existing control techniques for magne_

tostrictive actuators. For low drive level control applications, linear models and control methods have proven

suitable for both bulk magnetostrictive actuators [5, 7, 31, 32] and magnetostrictive particle actuators [29].

In a similar vein, the effects of hysteresis were also neglected and a linear law employed in [38] when designing

a high precision magnetostrictive micropositioner. Such methods break down at moderate to high drive levels

due to inherent hysteresis and nonlinearities [13]. For example, hysteresis provides a phase lag effect which

will destabilize a system if unaccommodated. One technique for extending the linear range of transducer

dynamics is based on the assumption that the underlying system is linear with nonlinear output harmonics

acting as a disturbance. As demonstrated by Hall and Flatau [17] and Hodges and Sewell [19], feedback

techniques can then be employed to reduce disturbances and improve linearity for certain operating regimes.

Various nonlinear control techniques have also been employed for high drive level applications. Jenner et al

[22] developed an active vibration controller for predescribed wave forms by considering a nonlinear control

technique implemented through switching between positive and negative gains to the actuator. A similar

objective was attained via neural network controllers by Bryant et al [4].

Control laws based upon Preisach models have also been employed for a variety of smart materials

including magnetostrictives [14]. Such models are based upon polynomial or piecewise constant approxima-

tions to the nonlinearities and hysteresis loop, and are advantageous when the underlying physics is not well

understood or quantified. Such characterizations provide a control input operator which is easily inverted (or

has an inverse which is easily approximated) which facilitates control design based upon output linearization

[36]. Feedforward control methods based upon Preisach models followed by linearization have been employed

for piezoceramics [15] and are applicable for magnetostrictives in certain regimes.

The generality of Preisach models, which provides their advantage when the physics is not well un-

derstood, also leads to inherent limitations in many control applications. Because such models are not

physics-based, they typically do not provide the capability for adapting to changes in operating conditions

(e.g., drive levels, prestresses, minor loops) through the monitoring of system inputs. The transducer dynam-

ics must be known a priori and incorporated directly in Preisach models whereas physics-based models of the

type employed here can adapt to changing dynamic levels solely through the measurement or designation of



inputcurrents.ThislimitsPreisach-basedcontrollawstopredefinedtrajectories(e.g.,periodic)anddoesnot
providethecapabilityfordirectlyattenuatingunmodeleddisturbancesorinputs.Moreover,forunanticipated
initialconditions,suchmethodsalsolackthecapabilityforcontrollingtransientdynamics.Finally,Preisach
modelstypicallyrequirea largenumberofnonphysicalparameterswhichlimitstheirflexibilityandincreases
implementationtimein manyapplications.

Thedevelopmentof thephysics-basedcontrolmethodis presentedasfollows.Section2 containsa
briefdescriptionof a typicalmagnetostrictivetransduceralongwithanoutlineof theenergy-basedmodel
employedin [9]. Themodelingandapproximationof transducerinputsto a thin beamarepresentedin
Section3. Thisprovidestheprototypicalcontrolsystemwithnonlinearactuatorinputs.Thecontrolprob-
lemisdiscussedinSection4. Followinganoutlineof nonlinearoptimalcontroltheoryforfinitedimensional
systems,a linearoptimalcontrolmethodis considered.Numericalresultsdemonstratethesuccessof the
methodat lowdrivelevelsandits failureat highdrivelevelsdueto unincorporatedphaselageffects.An
openloopnonlinearcontrolmethodwhichfully incorporatesmaterialnonlinearitiesandhysteresisis then
developed.Numericalexamplesareusedto showthat thismethodprovidesexcellentattenuationwhen
thesystemis knownexactlybut is not robustwith respectto systemuncertainties.Thefinalsubsection
of Section4 illustratesthedevelopmentandperformanceof a perturbationfeedbackcontrolmethodob-
tainedthroughlinearizationabouttheoptimalcontrolsystem.This feedbackmethodprovidesexcellent
attenuationof structuraldynamics,is highlyrobustwith respectto operatinguncertaintiesandis feasible
for implementation.Finally,themethodis effectivefor systemsexhibitingbroadbandresponsesandboth
periodicandtransientdynamics.

2. Magnetostrictive Actuator Model. Theissueswhichmustbeaddressedwhendevelopinga
nonlinearmodelingandcontrolmethodologyareillustratedthroughconsiderationofthetransducerdepicted
in Figure1. Thisconstructionis typicalfor actuatorscurrentlyemployedin structuralapplications(see
[16]),andits dynamicsexhibitthefull rangeof nonlinearitiesandhysteresiswhichmustbecharacterized
andincorporatedin controldesign.

TheprimarycomponentsofthetransducerconsistofamagnetostrictiveTerfenol-Drod,asurrounding
woundwire solenoid,a surroundingpermanentmagnet,anda prestressmechanismconsistingof spring
washersand/orcompressionbolts.Theinputto theactuatorconsistsof a time-dependentcurrent2"(t)to
thesolenoid.ThisgeneratesamagneticfieldH and corresponding magnetic flux B and magnetization M

within the Terfenol rod. The rod is constructed so as to contain a large number of regions in which moments
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Figure 1. Cross section of a typical Terfenol-D magnetostrictive transducer.



arealignedperpendicularto thelongitudinalrodaxis(theorientationofregions,termeddomains,isfurther
alignedbythe prestressmechanism).Theapplicationof themagneticfieldcausestherotationof these
momentswhichin turngeneratesstrainsandforceswithin thematerial.Thisprovidesthemechanismfor
actuation.Wenotethatthemagnetostrictivematerialscanalsobeusedfor sensingthroughmeasurement
ofthemagneticfieldsgeneratedbystress-induceddomainrotations.

AsillustratedinFigure2, the relationship between the applied field H and the induced magnetization M

displays significant hysteresis and saturation effects at high drive levels. This implies that the permeability

#, which relates the two, is a nonlinear, multivalued map. The magnetomechanical effects are also nonlinear

as illustrated in Figure 3. At moderate drive levels, the relationship between the magnetization M and strain

e is approximately quadratic, as depicted in Figure 3a, which yields the 'butterfly' relationship shown in

Figure 3b (the asymmetry is due to the use of experimental field input data when computing the modeled

strain). As illustrated in [9], the magnetization/strain relation also exhibits hysteresis at high drive levels

which must be incorporated in the magnetomectmnical model.
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Figure 2. Relationship between the magnetic field strength H and the magnetization M.

10 -4

8

7

6

e5

c

1; 4

Figure 3.

strain e.

L

-1 -0.5 0 0,5 1

Magr_ze_ M

10 -4

8

7

6

e5

3

2

1.5 5

x 10 5 x 104

-4 -3 -2 -1 0 1 2 3 4

M4tgnetJc Field H

(a) (b)

(a) Input/output relationships; (a) magnetization M and strain e and (b) Magnetic field H and



Themodeldescribedin [9]isusedto characterizethetransducerdynamics.Themagnetizationcompo-
nentof themodelis basedupontheJiles-Athertonmeanfieldtheoryfor ferromagneticmaterials[23,24,
25,33].Thistheoryis basedonthequantificationof energylossesdueto domainwall intersectionswith
inclusionsor pinningsiteswithinthematerial(thetransitionregionsbetweendomainsaretermeddomain
walls).Foramaterialwhichis freefrominclusions,thedomainwallmovementisreversiblewhichleadsto
anhysteretic(hysteresisfree)behavior.However,materialssuchasTerfenolcontainsecondphasematerials
whichimpededomainwallmovement.At lowfieldlevels,domainwallmovementaboutpinningsitesis
reversibleandyieldsa reversiblemagnetizationMrev. At higher drive levels, domain walls intersect remote

pinning sites which provides an irreversible component Mir_. It is this latter component which incorporates

the energy loss and hysteresis in the model.

To characterize the total magnetization M, we consider first the effective field within the material. For

rods subjected to a constant prestress a0, the effective field is given by

HeIf(t ) = H(t) + aM(t)

where

H(t) = nZ(t)

denotes the magnetic field generated by a solenoid having n turns per unit length with an input current Z(t).

The parameter a quantifies magnetic and stress interactions. Through thermodynamic considerations, the

anhysteretic magnetization is then defined in terms of the Langevin function

(2.1) M,,_(t) = Ms [coth (Hel--la(t)) - (Hell(t))].

Here Ms denotes the saturation magnetization of the material and a is a parameter which characterizes the

shape of the anhysteretic curve. Energy balancing (see [24]) is then used to quantify the irreversible and

reversible magnetizations through the expressions

(2.2) ----n--.dMi_ clZ Man(t) - Mi_r(t)
dt dt k5 - a[Man(t) - Mi_(t)]

and

(2.3) M_v(t) -- c[Man(t) - M_(t)]

(5 = -4-1 while the constants c and k are estimated from the experimental hysteresis curves). Finally, the

total magnetization is given by

(2.4) M(t) = Mr_v(t) + M_(t).

To first approximation, the strains generated by the material are given by the bulk magnetostriction

3 As M2..
(2.5) _(t) = _-_ (t)

where As denotes the saturation magnetostriction (see [23] for details). In combination, (2.1)-(2.5) charac-

terize the relationship between the input current 27 and the strains generated by the transducer. Details

regarding the well-posedness of the model are given in [35].



3. Structural Model. A structural system which has been experimentally employed to ascertain ca-

pabilities and properties of magnetostrictive transducers (see [10]) is illustrated in Figure 4. This system

consisted of a cantilever beam with end-mounted actuators. Diametrically out-of-phase currents to the actu-

ators generated bending moments which were used to attenuate transverse beam vibrations. We will employ

a model for this experimental setup as a prototype to illustrate the optimal control method proposed here.
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Figure 4. Cantilever beam with magnetostrictive actuators. Uniform force inputs are depicted above the

beam while the measurement point is indicated by the lower arrow.

3.1. Thin Beam Model with Nonlinear Actuators. For modeling purposes, the beam is assumed

to have length E, width b, and thickness h. The density, Young's modulus, Kelvin-Voigt damping coefficient

and air damping coefficient for the beam are denoted by Pb, Eb, COb and 7, respectively. The cross-sectional

area of the Terfenol rod is denoted by Amag while the Young's modulus and damping coefficient for the

Terfcnol rod are denoted by E g and c H. The length and width of the connecting bar are denoted by £r and

br, respectively, while the bar density is given by Pr- Finally, the transverse beam displacement is given by

w while g(t, x) denotes an exogenous surface force to the beam.

Moment and force balancing yields the strong form of the Euler-Bernoulli equations

02 W C_W

p(x)-3V(t, x) + 7-by(t, x) + --
c92Mma9 0 < x < g

(92f14i'_t (t, x) = g(t, x) + -- (t, x) ,
Ox2 Ox2 t > 0

_(t,o) = b--_(t, o) = o

.M,.,(t,e) - _ (t,_) = o

, t>O,

along with appropriate initial conditions, as a model for characterizing the transverse beam dynamics. As

detailed in [34], the composite density and internal bending moment are given by

p(x)=pbhb + 2p_brgrX_ou(x)

_2 w _P3 w

Jk4i, t(t,x) = EI(x)-b-_x2 (t,x ) + CDI o---_i-_(t,x )

where the characteristic function Xroa delineates the location of the rods and

Ebh3----_b+2AmagEH(h/2+E_)2X_od(x )EI(x) = 12

CDI(x)-- cDbhab
12 + 2Am_gc_ (h/2+E_)2Xr,,d(x).



ForthecasewhentheTerfenolrodsaredrivendiametricallyout-of-phase,theexternalmomentisderived
from(2.5)andisgivenby

]t4mag(t, x) = ICM[M2(t) + 2M(t)Ms]Xrod(X)

where K:M = (3As/M2)AmagE H (h/2 + tr) 2. The inclusion of the weighted magnetization 2M(t)Ms provides

the bias necessary to attain bidirectional strains.

To obtain a weak form of the model, we take the state to be the displacement w in the state space

X = L2(0, e) with the inner product

t/,

(¢, _')x = ]0 p¢¢ dx.

The space of test functions is taken to be V = H2(0, g) = {¢ E H2(0,g) I¢(0) = ¢'(0) = 0} with the inner

product

(¢, ¢)y = EI¢"¢" dx.

It should be noted that with these choices, V is continuously and densely embedded in H. Hence one has

the Gelfand triple

with the pivot space X.

(3.1)

for all¢ E V.

problem.

V _-, X _ X* _-_ V *

A weak form of the model is then given by

/0 /0 /0 /0 /0piiJ¢ dx + "y(v¢ dx + 2¢1i,,t¢" dx = Mmag¢" dx + g¢ dx

It is in this form that we develop the approximation method and formulate the control

3.2. Approximation Method. A necessary step for constructing an implementable control law is the

approximation of the infinite dimensional system (3.1). We employ a Galerkin approximation in the spatial

variable to obtain a semidiscrete ODE system in time which is amenable to control formulation. Specifically,

f¢ .l rn+lthe spatial basis is taken to be L JJj=l where ej(x) denotes the jth cubic B-spline modified to satisfy the

fixed left boundary condition. Approximate solutions

(3.2)
m+l

win(t,x) = _ w_(t)¢_(x)
5=1

are then considered in the subpace V m = span{¢j}. To obtain a vector ODE system, the infinite dimensional

system (3.1) is restricted to V m and posed in first-order form to yield

(3.3)
y(t) = Ay(t) + [B(u)](t) + G(t)

y(O) = Yo.



The component system matrices have the form

A

E°][B(u)l(t) = [M2(u) 4 ?M(u)Ms] (t) _-1_

[0]c(t) = Q-i#(t)

where y(t) -- [wl (t),. • •, w,,+l (t), _31 (t), • • • , _)m+l (t)] and

(3.4)

[O],j = fo P¢'¢Jdx

//[g],j " "= EI¢i ¢i dx

//[c],j " "= CDI¢i ¢_ dx.

[/_1' = K:M f,n ¢_' dx
ag

//[O(t)]_= g(t,x)¢, ax

Note that u(t) = 2"(t) denotes the control input to the system. For future development, it is useful to let

denote the 2(m + 1) vector b = [0, _-Ij_]T so that the control input can be written as

(3.5) [B(u)l(t) = [M2(u) + 2M(u)Ms] (t) b.

The system (3.3) provides the constraints employed in the control problem.

3.3. System Parameters. For the examples which follow, the choice m = 12 was sufficient for resolv-

ing beam dynamics in the frequency range considered and all reported results were obtained with m = 16.

The dimension of the state vector y was then 34 × 1 due to the inclusion of both displacement and velocity

components.

The specific physical parameters employed in the examples are summarized in Table 1. It should be

noted that the beam parameters are consistent with typical values for aluminum laboratory beams while the

Terfenol parameters are within the range obtained for model fits to an experimental transducer [9]. For this

choice of beam parameters, the first two natural frequencies for the system occur at 6.1 Hz and 38.3 Hz.

To account for the effects of parameter discontinuities due to the actuators and damping in the system, it

was necessary to obtain these values through a fast Fourier transform (FFT) of time domain data resulting

from a simulated impact to the beam (it is not possible to obtain analytic expressions through separation

of variables). The driving frequency in the numerical examples will be chosen close to but not exactly

concurrent with these natural frequencies.



Beam Actuator Terfenol
Eb = 7.0861 x 101° g/m 2

Pb = 2863 kg/m 3

CDb -: 9.3663 x 105 Ns/m 2

= .013 Ns/m 2

E H : 7.0 x 101° N/m 2

Pr = 8524 kg/m 3

£r : .0254 m

b_ : .002 m

A,nag = .0064 m 2

a -- 7105 A/m

k = 7002 A/m

c_ -- .007781

c-- 0.3931

Ms -- 1.3236 x 10 s A/m

A_ ----9.96 x 10 -4

Table 1. Parameters for the beam and Terfenol transducer.

4.

is

(4.1)

Control Problem. The general form of the finite dimensional control system under consideration

9(t) = i(y(t), u(t), t)

y(t0) = y0

(4.6)

where A(t) E IR2('n+D

equation (4.1) satisfies

with states y(t) E ]R2(m+1) and controls u(t) E IRp where p = 1 for the case of a single actuator pair. As

detailed in [6, 26, 27, 30], an appropriate performance index for minimization over the time interval [to, tl]

is

(4.2) J(u) = ¢(y(tf), tf) + L(y(t), u(t), t) dt

where the Lagrangian is given by

1
(4.3) L(y(t), u(t), t) = _ [yT(t)Qy(t) + uT(t)Ru(t)] .

The symmetric, nonnegative definite matrix Q and symmetric, positive matrix R weight the state and control

input while the function ¢(y(tf), t f) penalizes large terminal values of the state. Energy considerations can

be used to specify both Q and ¢. As detailed in [2], an appropriate choice of Q, which arises from the

minimization of the kinetic and potential energies, is a multiple of the mass matrix. Similarly, the choice

(4.4) ¢(y(ti) ,tf) : lyT(tf)Hfy(t[)

minimizes the final energy when H I is specified as a positive matrix. In the examples which follow, Q and

Hf were chosen as

: [ dl g , g
(4.5) #

L

where K and (_ are given in (3.4) and dl,--., d4 are integer weights.

The Hamiltonian associated with this system is

H(y, A, u, t) : L(y, u, t) + AT f(y, u, t)

is the adjoint variable or Lagrange multiplier. It should be noted that the state

where OH denotes the gradient of H with respect to A.



The minimization of (4.2) is constrained by the system (4.1). To pose this as an unconstrained op-

timization problem, we incorporate the constraints via the Lagrange multiplier and consider the modified

performance index

J to

(4.7)

= -2yr(ts)Ilsy(tl) + --/t, [U(y,u,t)- AT(t)y] dt.
J to

The minimum of the constrained functional J occurs at the minimum of the unconstrained functional

which in turn occurs when dJ -- 0 (see [6, 26, 27]). Enforcement of this condition yields the necessary

adjoint condition

__ 0H

(4.s) oy

and the stationary condition

(4.9) OH
Ou O.

Note that the terminal condition on the adjoint variable is chosen to satisfy the transversality constraint

for the system. This provides the framework employed in the finite dimensional linear, nonlinear, and

perturbation control methods discussed next.

State Tracking Problem

The goal in many applications entails the control of system dynamics to a specific trajectory s(t) given

observations

(4.10) yob(t) = Cy(t),

in lR t, of the state dynamics. An appropriate performance index for this case is

fi'J(u) = ¢(Cy(ti) - s(ti) , tl) ÷ L(y(t) - s(t), u(t), t) dt

where L and _p are given by (4.3) and (4.4), respectively. The final time boundary condition for this choice

is then

_(tl) = crnl ICy(t1) - 8(tl) ] •

4.1. Linear Optimal Control. At low drive levels with magnetic biases, experimental data has indi-

cated a nearly linear relation between input currents to the solenoid and strains output by the transducer.

This is reflected in the model response and can be employed when designing a control method for such

regimes. For low drive level applications, reasonable approximate models and control methods can be at-

tained through linearization about an appropriate input u0. One choice is the coercivity value uo = uc at

which M(uc) = O. In this case, the approximate linear control operator B is

10



where

OM M,._ - Mir,.

o-V = n(1 - c) k_ - _[Mo. - M,r_] [1 o]+ncM_ eseh 2 + _ .

Under this approximation, the corresponding first-order system is

(4.11)
y(t) = Ay(t) + Bu(t) + G(t)

u(O) = Uo.

The stationary condition (4.9) then yields the optimal control

u*(t) = -n-:Br_(t)

while the state constraint (4.11) and adjoint condition (4.8) yields the optimality system

(4.12)

[=o +o

The construction of the optimal control requires the solution of the two-point boundary value problem (4.12).

Due to the linearity of the system, however, a fundamental solution matrix can be employed to formulate

the optimal control as

(4.13) u*(t) = -n-: Br[II(t)y(t) - r(t)]

where H(t) solves the differential Riccati equation

(4.14)
-II = ATH + HA - HBR-1BTH + Q

II(t_) = n_.

The perturbation variable r(t) E _2(m+a) is obtained through integration of the final time system

÷(t) = - [A - BR-:BTII]Tr(t) + HG(t)

r(tf) = o.

In this manner, the solution of a system with split conditions at the initial and final times is replaced by

solution of systems with only final time conditions.

Two special cases are sufficiently common in applications to warrant further discussion. The first con-

cerns the infinite time problem while the second characterizes Riccati solutions and optimal controls when

input forces are periodic. It is important to note that in these cases as well as the general finite time for-

mulation, the control (4.13) acts in a feedback manner on current states of the system. This will not be the

case with the nonlinear control method.

11



4.1.1. Infinite Time Problems. For the strongly dissipative systems under consideration, it is reason-

able to assume that (A, B) is stabilizable and (A, C) is detectable (see (4.10) for discussion of the observation

operator C). In this case, as t ---* co, y and u approach 0 at a sufficient rate to guarantee the existence of

the performance index

(4.15) J(u) = _ [yr(t)Qy(t) + uT(t)Ru(t)] dt.

The Pdeeati matrix used to characterize the feedback control (4.13) is the solution to the steady state

algebraic Rieeati equation

(4.16) ATH + HA - HBR-1BTH + Q = 0

and is now constant. Similarly, the decay of solutions implies that the perturbation component is given by

r(t) -= 0. Hence implementation of the method requires only the offline solution of a Riccati solution followed

by online feedback on observed states.

4.1.2. Periodic Problems. A second case which commonly arises in applications is that in which

the exogenous force G(t) models periodic or oscillatory inputs to the system. If r denotes the fundamental

period for all frequencies present, an appropriate performance index is

= + dt

Under the hypotheses of stabilizability and detectability, it is shown in [3, 12] that the optimal control (4.13)

can be formulated in terms of the solution to the algebraic Riccati equation (4.16) and the solution to the

periodic perturbation system

÷(t) = - [g - BR-'BTH] T r(t) + He(t)

r(0) = r(r)

This yields a feedback algorithm which is efficient to implement in many applications.

4.1.3. Numerical Example - No Exogenous Force. To illustrate the performance and limitations

of the linear control method, we consider the use of the linear control law in the nonlinear system

_)(t) = Ay(t) + [B(u)](t)
(4.18)

y(t0) = y0

for various magnitudes of the initial value Y0. To obtain these values, the uniform force g(t, x) = go sin(107rt)

was applied to the uncontrolled beam for to -- 0.45 seconds and then terminated. The initial value Y0 was

taken to be the state at the time to when control was initiated. Control inputs were computed through

minimization of the infinite time performance index (4.15) with R -- 5 × 10 2 and dl = d2 = 5 × l0 s in the

definition (4.5) for Q.

The implementation of the method in this manner provides a numerical illustration of effects which may

be observed when control currents computing using a linear model and control law are fed back into the true

physical system having nonlinear actuators. While we are not providing here the full convergence analysis

and model fits to a physical apparatus, numerous experiments have demonstrated the validity of the model

[9] and the trends illustrated by these numerical results.
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Theuncontrolledandcontrolledbeamdisplacementsat thepoint• = 3i/5 (see Figure 4) with go = 1

are plotted in Figure 5b while the displacements generated with go -- 100 are plotted in Figure 5d. The

relationship between the input magnetic field H = n:Z" = nu and magnetization M for the two cases are

given in Figures 5a and 5d. It is noted that at the low drive level, the relationship between H and M is

approximately linear and the feedback of the linear control u into the nonlinear system (4.18) is very effective.

At the higher drive levels, however, the relationship between H and M displays significant hysteresis which

leads to energy loss and time delays in the input. In this case, the linear control law (4.13) does not provide

the capacity for accurately quantifying and incorporating the hysteresis and subsequent delays which in turn

produces the loss in control authority observed in Figure 5d. This illustrates that while the linear control

method can be effective at low drive levels, it does not provide the accuracy necessary for moderate to high

drive level applications. For such regimes, control methods which incorporate the actuator nonlinearities are

required.
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Figure 5. Feedback of linear law (4.13) into the nonlinear system (4.18). Relationship between magnetic

field H and magnetization M; (a) go = 1 and (c) go -- 100. Uncontrolled (--) and controlled (-----) beam

trajectories at the point £ = 3g/5; (b) go = 1 and (d) go -- 100.
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4.1.4. Numerical Example - Periodic Exogenous Force. A second regime common in structural

applications is that in which exogenous disturbances are periodic (e.g., oscillating mechanical components).

In this case, a semidiscretization in the spatial variable yields a system of the form (4.11) where G(t) is

periodic. To illustrate, the spatial uniform exogenous force g(t,x) = go sin(10_rt) was applied throughout

the time interval [0, 2.5]. The uncontrolled trajectories at • = 3£/5 with go = 1,100 are plotted in Figure 6b

and Figure 6d, respectively. Both cases exhibit a beat phenomenon due to the close proximity of the 5 Hz

driving frequency with the 6.1 Hz natural frequency for the beam (see Section 2.3).

Controlling currents were computed via (4.13) with intermediate perturbation solutions obtained through

integration of the system (4.17). Inputs for the low and high drive level cases are illustrated in Figures 6a

and 6c. As in the previous example, the linear control method is highly effective at low drive levels where

the linear model is accurate. At the high drive level in which the actuators are advantageous, however,

the input exhibits significant hysteresis which acts as a phase delay to the system. The result is a loss in

control authority to the extent that controlled beam trajectories actually have larger magnitudes than the

uncontrolled beam. This further motivates consideration of a nonlinear control method.
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Figure 6. Feedback of linear law (4.13) into the nonlinear system (4.18). Relationship between magnetic

field H and magnetization M; (a) go -- 1 and (c) go ----100. Uncontrolled (--) and controlled (--) beam

trajectories at the point _ -- 3g/5; (b) go = 1 and (d) go -- 100.
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4.2. Nonlinear Optimal Control. We consider here the problem of constructing a nonlinear control

for the system

y(t) = Ay(t) + [B(u)](t) + G(t)
(4.19)

y(t0) = yo.

In this case, minimization of the of the performance index (4.2) or (4.7) yields the optimality system

(4.20)

y(to) = yo

Ay(t) + [B(u)](t) + G(t) ]-ATA(t) - Qy(t)

 (tl) = IIiy(tl)

where the optimal control satisfies

u*(t) -= -R- I[BT (u*)](t) )_(t).

Due to the nonlinear nature of the input operator B(u), decomposition of the system matrices in terms of a

fundamental matrix solution is not possible which prohibits efficient solution in terms of a Riccati matrix.

To this end, we consider the approximation of the full two-point boundary value problem (4.20) or the

equivalent first-order system

2(t) = F(t, z)

(4.21) Eoz(to) = [Y0, 0] T

Eiz(tl) = [0, Hfy(tf)] T

where z = [y, )_]T and

F(t'z) = [ Ay(t) + [B(u)](t) + G(t) ]--AT)_(t)-- Qy(t)

(4.22)

[00]Ea = , E f = •
0 0 0 I

Here I denotes a 2(m + 1) x 2(m + 1) identity matrix where m + 1 denotes the number of basis functions

employed in the spatial approximation (3.2) of the state variables.

The solutions to the system (4.21) can be approximated through a variety of methods including finite

differences and nonlinear multiple shooting. To illustrate a finite difference approach, we consider a dis-

cretization of the time interval [to, tl] with a uniform mesh having stepsize At and points to, tl,.-., tN = t I.

The approximate values of z at these times are denoted by z0, • • •, zN. A central difference approximation

of the temporal derivative then yields the system

1 1 [F(tj, zj) + F(tj+l, zj+l)]

(4.23) Eozo ----[Y0, 0]T

forj = 0,..-,N- 1.

Eizlv = [0, nsy(ts)] T
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Thedeterminationof asolutionvectorZh = [z0,' "-, ZN] to (4.23) can then be expressed as the problem

of finding Zh which solves

(4.24) i_(Zh) = O.

For the difference method and boundary conditions considered here, _F(Zh) E _:_4(N+l)(m+l) has the form

F0

F1

F_

FN-1

b(z0, ZN)

_'(zh) =

1 1 [F(tj, zj) + F(tj+l, zj+l)]fj = K/[z_+l - zj] -

A quasi-Newton iteration of the form zhk+l = Zhk + _hk, where _hk solves

(4.25) _'(z_)_ = -_(z._),

is then used to approximate the solution to the nonlinear system (4.24). The 4(N+ 1)(m+ 1) × 4(N + 1)(m+ 1)

Jacobian _"(Zhk) has the form

where

So

The matrix A(ti) is the linearization

which yields the representation

Eo

Ro

$1 R1

• °
• o

SN- 1 RN-1

Ef

_____11 _ 1A(ti)Si= At

l i_l
Ra = At _A(t_+l).

A(ti) = OF-5-;z(ti ,_,)

1[,o]i[AS_ - At 0 I -- _ Q -A T

for Si. The representation for P_ is similar.

For this application, direct solution of (4.25) is infeasible due to the large number of variables required

to resolve the solution over a reasonable time interval• The structure of the Jacobian can be employed,
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however, to reduce both memory and computational requirements to the level of solving 4(m + 1) × 4(m + 1)

systems. To this end, we express the Jacobian in the analytic LU decomposition

where

.T'(Zkh) = LU

L __

So

S1

SN- 1 0

N-2 N-1

Eo -Eo(SolRo) ..- E0 H (-1)'(S_-IRi) El + Eo 1-I (-1)_(Si -1/_)
i=l i=1

V __

I SolRo

I S_IR1

°•o

I SNI_IRN_I

I

The solution of the system (4.25) is then obtained through direct solution of the system lower triangular

system L_ -----_-(z k) followed by direct solution of the upper triangular system V_ k = _k.

Remark 1: The conditioning of the matrices Si and P_ is partially governed by the choice of state weights

dl, d2 in Q (see (4.5))• The conditioning is improved through the choice of values on the order of 103 or less.

To maintain control authority, this dictates the choice of control weights R to be on the order of 10 -3 or less.

For these choices, the component matrices in the lower and upper diagonal systems are well conditioned.

P_mark 2: The spatial approximation of the beam model was fully resolved with m = 12 basis functions

and the results reported here were obtained with m = 16. This yields a total of 4(m + 1)(N + 1) = 13940

coefficients to be obtained when using a stepsize of At = .01 on the time interval [0.45, 2.5]. To test the

efficiency and memory requirements necessary for extending the method to problems in two space dimensions,

we also ran the problem with m = 144 basis functions. This would correspond to a discretization with 12

basis functions in each spatial dimension and yields a total of 118,900 unknowns to be obtained. The

method is sufficiently efficient so that even in this range, computations could be performed on a workstation

in Matlab.

Remark 3: The matrix products arising in the lower triangular system L can be formed recursively.

Moreover the component matrices have significant structure which can be utilized when forming the matrix

products. The utilization of inherent recursions and structure is necessary when considering systems in two

space dimensions which can have in excess of 500 states•
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4.2.1. Numerical Example - No Exogenous Force. The use of the nonlinearcontrolmethod is

illustratedin the context of the cantileverbeam driven for 0.45 seconds by the uniform forceg(t,x) =

100 sin(107rt)at which point the forcewas terminated and controlinitiated.The controlinputswere com-

puted using the approximation method (4.23)forthe two point boundary valueproblem (4.21)on the time

interval[to,t/]= [0.45,2.45].The controlweights were taken to be dl = d3 = 5 × 102 and R = 5 x 10-4.

This yieldedan optimal currentwhich was then appliedasan open loop controlto the system. The resulting

controlledtrajectoryat the point • - 3£/5 iscompared with the uncontrolledtrajectoryin Figure 7. The

correspondingrelationshipbetween the input magnetic fieldand output magnetization isplottedinFigure 8.

Itisnoted that the model-based nonlinearcontrollaw very adequately incorporatesthe inherenthysteresis

in the transducer and provides complete attenuationwithin 0.5 seconds of being invoked. This illustrates

the performance ofthe nonlinearcontrollaw and capabilitiesofthe magnetostrictivetransducersunder ideal

operatingconditions.

One difficulty with an open loop control law of this type is its lack of robustness with respect to uncer-

tainties in operating conditions. Such uncertainties can be due to unmodeled dynamics, changing operating

conditions, or slight delays or phase shifts due to filters, etc., and are present to some extent in all experi-

mental systems.

To illustrate the effect of uncertainties on the performance of the open loop control, we consider the

same system with the control applied 0.03 seconds late. This is a very reasonable scenario in experiments

and must ultimately be accommodated by the control law. The uncontrolled and controlled trajectories for

this case are depicted in Figure 9. The slight delay in the initiation of the control input results in a complete

degradation of control authority (compare with the attenuation in Figure 7 with no delay). This illustrates

the necessity of feeding back some form of state information and motivates consideration of perturbation

control methods.

3[ .... 1

-3
0.5 1 1.5 2

Time

Figure 7. Uncontrolled and controlled beam trajectories at the point _ = 3£/5; --

(controlled).

(uncontrolled),
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Figure 9. Uncontrolled and controlled beam trajectories at the point x -- 3_/5 with control initiated 0.03

seconds late; -- (uncontrolled), _ (controlled).

4.2.2. Numerical Example - Periodic Exogenous Force. The techniques for computing the open

loop nonlinear control for systems with exogenous forces are identical to those employed in Section 4.2.1; one

simply modifies F in (4.21) by the appropriate exogenous force. To illustrate, the force g(t, x) = sin(10_rt) was

applied for the full time interval [0.2.5] with the optimal control computed for the interval [to, tf -- [0.45, 2.5].

The resulting beam trajectory and inputs are plotted in Figure 10 and Figure 11. A comparison of Figures

10 and 6 indicates that reductions on the order of those obtained in the low drive level linear case can be

obtained with the nonlinear law. Figure 11 illustrates that following an initial transient phase, the input

relation settles into a hysteretic periodic cycle with the frequency matching that of the driving input.
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In this case, the system is subject to uncertainties in the measured exogenous force in addition to the

operating uncertainties discussed in Section 4.2.1. This can include perturbations in frequency or phase

which can destabilize a feedback method and degrade open loop attenuation if unincorporated. In Figure 12,

we illustrate the trajectories of a beam subjected to the force

g(t,x) = _ 100sin(10rt) , t < .45

( 100sin(141rt - 1.Srr) , .45 < t < 2.5

with the factor of 1.87r included to ensure the continuity of g. The effect of the frequency change can be

noted in that 12 oscillations are now present in the control interval [.45, 2.5] compared with the 10 oscillations

noted in Figure 10. The open loop control was computed for the assumed force g(t, x) = 100 sin(10rct) and

was applied 0.03 seconds late. It is noted that the control attenuation is completely degraded by these

uncertainties and that further robustness must be incorporated in the method.

Remark 4: The persistence of beam vibrations in spite of the control input indicates a physical limitation

of the actuator setup rather than a deficiency in the control formulation. To attain greater attenuation, one

must investigate controllability issues related to physical criteria such as actuator number and placement.

The degree to which such physical issues play a role depends upon the application and in many cases,

attenuation on the order of that observed in Figure 10 is sufficient.
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Figure 10. Uncontrolled and controlled beam trajectories at the point _ -- 32/5;

(controlled).
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Figure 12. Uncontrolled and controlled beam trajectories at the point 2 = 3£/5 with control initiated 0.03

seconds late and a 2 Hz frequency perturbation; -- (uncontrolled), _ (controlled).

4.3. Perturbation Control. As illustrated in the last example, a purely open loop control law suffers

from lack of robustness with regard to system uncertainties. For various classes of uncertainties, robustness

can be significantly enhanced through consideration of perturbation control techniques [6, 27]. In these

methods, the system is linearized about the optimal control pair (u*(t),y*(t)) obtained through solution

of the two-point boundary value problem (4.20) or (4.21). A feedback control 5u*(t) is then designed to

attenuate perturbations in the system due to uncertainties in the exogenous force or uncertainties in initial

conditions as depicted in Figure 13. Both are common in applications with perturbed initial conditions often

due to uncertainties in the starting time for the open loop control. Because LQR theory can be invoked to
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y*(t0) + _Sy(t 0)

y*(t 0) !'""-.. y* (t) + _iy(t) ..--'""

y*(t)

E t

Jt 0 tf

Figure 13. Optimal open loop controlled state and neighboring state due to perturbed initial condition.

construct the perturbation control 5u* (t), the implementation of the method is very efficient once the open

loop control pair has been determined.

The perturbation control system can be obtained by expanding the augmented cost functional and

constraint equations through higher-order terms and employing the simplifications provided by the fact that

u*(t) and y*(t) minimize the first-order optimality system. Since dJ = 0 for the optimal pair (u*(t), y*(t)),

expansion of the augmented cost criterion (4.7) through second-order terms and constraints to first-order

yields

(4.26)

and

(4.27)

1/I
5f](t) = ASy(t) + B_iu(t) + 5G(t)

_y(o) = _o

where (fu and _y are first-order variations about u* and y*. The optimal perturbation control 5u* is that

which minimizes (4.26) subject to (4.27).

For the Hamiltonian (4.6), the second variation 62j is given by

 f,i'(4.28) 6_Y = -_ {<QSy, 5y> -F (R_Su, 5u>} dt

so that the LQR theory outlined in Section 4.1 can be directly employed to obtain _fu* (t) and _y* (t). The

overall control for the system is then taken to be u* (t)+ _fu*t(t) with the optimal state given by y* (t)+ _y" (t).

For implementation purposes, it should be noted that the optimal open loop control u* (t) can be computed

offiine leaving only _u*(t) to be computed online.

4.3.1. Numerical Example - No Exogenous Force. The performance of the method is first illus-

trated in the context of Example 4.2.1 in which a perturbed initial value is introduced through application

of the optimal control u*(t) to the system 0.03 seconds late. As noted in Figure 9, this perturbation is

sufficient to destroy the authority of the open loop control. To accommodate these perturbations, we employ

the control law

5u *(t) = -R-1BTIISy(t)
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whereH satisfiesthealgebraicRiccatiequation(4.16).Theresultingcontroltrajectoryis illustratedin
Figure14.It isnotedthatthroughtheuseofthefeedbackperturbationcontrol,attenuationcomparableto
that fortheunperturbedsystem(seeFigure7) is obtained.Thisprovidesasignificantenhancementofthe
methodwithrespectto perturbationsin initialconditions.
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Figure 14. Uncontrolled and controlled beam trajectories at the point _ = 3g/5 with control initiated 0.03

seconds late;- (uncontrolled),---. (controlled).

4.3.2. Numerical Example - Periodic Exogenous Force. Systems driven by an exogenous force

are subject to force perturbations in addition to initial uncertainties or delays in control implementation. As

illustrated in Example 4.2.2, perturbations from the expected 5 Hz force to a measured 7 Hz force completely

degrade the open loop control. In this case,

5g(t, x) : lO0[sin(147rt- 1.87r) -sin(lOlrt)]

over the time interval [0.45, 2.5], and the perturbation control has the form

5u *(t) = -R-1B T [_r(jy*(t) - (Jr(t)]

where 5r(t) solves

(j÷(t) = - [A - BR-1BTH] T tit(t) + rIZG(t)

or(o) = zr(T).

In addition to the force perturbation, a perturbed initial condition due to a 0.03 second delay in control

initiation was included in the system.

The uncontrolled and controlled beam trajectories at the point _ = 3g/5 are compared in Figure 15.

It is noted that while the trajectories differ in frequency due to the combined open and closed loop effects,

significant attenuation is attained throughout the time interval due to the feedback perturbation control
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component. A comparison with Figure 10 indicates that the controlled trajectory is comparable in magni-

tude to that in the perturbed case even though the uncontrolled displacement is significantly larger. Such

attenuation levels have also been noted with larger frequency perturbations (e.g., a perturbed driving fre-

quency of 18 Hz). Hence the perturbation control provides a feedback methodology which is highly robust

as well as efficient to implement.
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Figure 15. Uncontrolled and controlled beam trajectories at the point • = 3£/5 with a 2 Hz force pertur-

bation and control initiated 0.03 seconds late; -- (uncontrolled), -- (controlled).

5. Concluding Remarks. This paper addressed the development of a physics-based control method-

ology appropriate for magnetostrictive actuators in moderate to high drive level regimes. At such drive

levels, these materials exhibit significant hysteresis and nonlinear dynamics which must be incorporated in

the model and control method to attain the full potential of the actuator (both experiments and numer-

ical simulations have demonstrated that linear methods fail at such drive levels). For various structural

applications, it is also necessary to control both transient and steady state dynamics.

To attain these objectives, a model based upon ferromagnetic mean field theory was used to characterize

the actuator dynamics including the inherent hysteresis and nonlinearities. This provided a method of accu-

rately quantifying multiple frequencies and transient dynamics. Optimal control theory was then employed

to obtain an open loop control which incorporated the actuator hysteresis and nonlinearities. This nonlinear

control was combined with a perturbation feedback control to attain a hybrid method which was highly

robust and efficient to implement. Finally, the efficacy of the method was demonstrated through numerical

examples.

We note that the method described here does not address the minimum time control problem nor

does it actively enforce admissibility criteria. If time minimization is desired, the control problem can

be reformulated with the final time and final adjoint values treated as components of the solution. For

applications which require that the control u(t) lie in an admissible region, the stationary conditions (4.9)

must be replaced by some form of the Pontryagin minimum principle. Details concerning both cases can be

found in [6, 27].
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In its present form, the method is currently designed for linear structural models. While it was illustrated

in the context of a PDE-based thin beam model, the flexibility for employing large discretization limits in

Matlab (in excess of 144 basis functions) indicates that the method can be directly applied to certain linear

plate and shell models. For larger problems in which the number of spatial variables or time steps prohibits

global optimization over the full time interval, piecewise methods of the type described in [20, 21] can be

employed to obtain suboptimal solutions over each time step. These piecewise states and controls can then be

patched together to obtain a global solution over the full time interval. Finally, we note that the extension of

this method to nonlinear structural models is also important due to the advantages of high output actuators

in such regimes and is under current investigation.
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